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Abstract

We give a Szego-type theorem for [7-extremal polynomials with respect to varying
measures on |z| = 1. Also, we present a density theorem and a generalization of the main result
to closed rectifiable Jordan curves and to |z| = 1 with the possible addition of a finite number
of mass points.
© 2003 Elsevier Inc. All rights reserved.

1. Introduction

Orthonormal polynomials with respect to varying measures were introduced
about 25 years ago by Gonchar and Lopez Lagomasino [5] in connection with a
systematic study of the convergence properties of interpolating rational functions
with free poles to Markov functions. In a more general context, such approximants
are called multipoint Padé approximants. In [5], an analogue of the classical Markov
theorem in the theory of continued fractions was proved. Meanwhile, a number of
research papers have been devoted to the subject of orthonormal polynomials with
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respect to varying measures; surveys can be found in [12,17], and Chapter 6 of [15].
The emphasis in the present paper is on strong asymptotic, which in the unweighted
situation is known as Szegd asymptotics for I[”-extremal polynomials [4]. Strong
asymptotic results for orthonormal polynomials with respect to varying measures
have been proved in various degree of generality in [2,3,11,14,17].

The classical theory of strong asymptotics has its most simple and perhaps also its
most natural form for orthonormal polynomials with respect to a measure supported
on the unit circle T = {|z| = 1} [16, Chapters XI, XII], or [13, Chapter 3]. Similar
results for orthonormal polynomials on a real interval are then usually deduced from
the results on T in a second step. In [10] Lopez—Lagomasino presents orthogonal
polynomials with respect to varying measures in a such a way that unifies the theory
for the cases of measures with bounded and unbounded support. He also proves
asymptotic results for orthogonal polynomials respect to (a fixed) measure with
unbounded support using orthogonal polynomials respect to varying measures on T.

Also, these polynomials are very important in Potential Theory. The solution of a
number of problems in approximation theory can be reduced to finding the
equilibrium distribution of a charge on a “conductor” in the presence of certain
“external fields”. Problems of this type arise, for example, in the theory of
convergence of Padé approximants. In [6], Gonchar and Rakhmanov proved a
general theorem which characterizes the limit distribution of the zeros of orthogonal
polynomials with respect to varying measures. Also, Gonchar and Rakhmanov
proved in [7] a general result concerning the exact rate of best rational
approximation for a large class of analytic functions. This result was stated in
terms of equilibrium distributions in the presence of external fields and the proof is
based on the construction of convenient multipoint Padé approximants whose
convergence properties in turn reduces to the study of the limit distribution of zeros
of sequences of polynomials which satisfy complex orthogonal relations with respect
to varying measures.

In this paper, we give a SzegO-type theorem for [7-extremal polynomials with
respect to varying measures on |z| = 1. This result will be stated in this section and
proved in Section 3. Section 2 is devoted to some auxiliary statements. In Section 4,
we present a theorem on density of rational functions and finally, in Section 5, we
give some generalizations of the main result. We begin introducing some notations.

Let u be a finite positive Borel measure on [0,27) whose support contains an
infinite set of points. In the sequel, we consider {W,}, neN, a sequence of
polynomials such that, for each neN, W, has degree n (degW, = n), all its zeros
{wn;: 1<i<n} liein D = {z : |z| <1}, and they satisfy

n

lim > (1= wil) = + 0. (1)

n— oo -
i=1

We want to study the asymptotic behavior of polynomials that solve the extremal
problem

On

n
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s

Ty p = inf in
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where IT,, is the set of polynomials of degree at most n, W*(z) = 2" W,,(

i1, = L [irrand”

Note that the zeros of W;(z) are {-=},_, ,<E={|z|>1}. From now on, P, ,

v f—

), and

denotes a polynomial such that

‘ Pup

W,
Let i/ be the Radon—Nikodym derivate of p with respect to the Lebesgue measure.
Assume that logu'eL'; let D,(u,z) denote the corresponding Szegd function;
that is,

= Tn, p-
p

1 o C+Z ! i0
D,(u,z) —exp{2p—7I | C_Zlogu(ﬁ) d@}, (=¢" zeD.
Set
M if zeS,uD,
KF(.u7Z) = Dp(:ua Z) (3)
0 if ze S,

where S, and S; give a disjoint decomposition of the unit circle such that g’ and y;
live on these sets, respectively. Hereafter, u, denotes the singular part of u with
respect to the Lebesgue measure. H?, 0 <p <1, is defined as the class of all functions
f analytic in D such that

2n ) 1/p
sup (/ | £ (re) d@) <.
0<r<l1 0

It is well known that H? can be identified with the closure in L” of the set of
polynomials in ¢.

The function D,(u,z) satisfies the following properties:
(1) Dy(p,z) is analytic in D; more precisely, D,(u,z) € H?,
(2) Dy(p,z)#0 in D, and D,(u,0)>0,
(3) |D,(u,e?) P = 1/(0) almost everywhere (a.e.) in [0, 27].
HP(u) is defined as the L7 (u) closure of the polynomials in €. 12 (u) = { fe L (u) :

f=0,/ae} and L2(u) ={fel(u):f =0,pa.ec.}. Similarly, we define H?(u)
and H?(u).

Moreover, if f'€ H?(u), then there exist unique functions 7./: such that
f=KJ+fs JeH’, and fieL}(n). (4)

A proof of this result can be seen in [1].
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The main theorem of this paper which will be proved in Section 3 is the
following:

Theorem 1. For 0<p < oo, the following statements are equivalent:

() u satisfies the Szegé condition; that is, log /' e L.
(11) The following limit exists and is positive

lim 7, ,>0.
n— oo

(ili) There exists a function SeHP(w) with ||S|[,#0, such that

P
n,p_S
W*

n

=0.

lim
n— o0

(iv) There exists a function T analytic in D such that

P, ,(2)
o Wi(z)
Am e =T
W »

holds uniformly on each compact subset of D.

Moreover, if (1) holds, then
nlir;glo T, p = Dp(11,0),

and the functions in (iii) and (iv) are S(z) = K,(u,z) and T(z) = D,,(lu o

2. Auxiliary results

Before we can prove the theorems in the following sections, we need to establish
several auxiliary results.

Let K be a compact set and {a,, 1, ..., %, } € C\K be a given set of points. Let F, be
the set of functions of the form

bn,OZn + bmlzn_l + -+ bn,n
m(z) =

(Z - ‘xn,l)(z - O‘n-,2) (Z - O‘n.n).
Let f be a continuous function on K. Denote by r,(f) the best approximation to f(z)
on K in the class F, in the sense of Tchebycheff; that is,

L = ra(N = min{||f = ma|| : 70 € Fy }

with || - || the supremun norm on K.

(5)
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Theorem 2. (See Walsh [18, pp. 246-247]). Let the points o) satisfy |omi|>1. A
necessary and sufficient condition such that

lim r,(f)(z) =f(2), uniformly in |z|<1, (6)

n— oo

for every such function f analytic in {|z|<1} is that

. - 1

k=1

A result due to Keldysh is also useful in the proofs that follow. This theorem appears
in [9]. An extension of Keldysh’s theorem is the following.

Theorem 3. (See Bello Hernandez et al. [1]).' Ler {zi}iz1.. A be a set of points in D,
where A can be finite or infinite. Let B be a finite positive Borel measure on [0,2n)

satisfying the Szegé condition and {f,} < H?(B) (from (4), fu = K,(B,.)fn + fus)s
0<p< o0, such that

() lim, o £,(0) = 1;
(i) lim,,_ o fn(zi) =0,i=1,2, ..;
(i) S8, (1= |zi]) < + oo;
(iv) limnl_, (] ﬁ,(ef9)|Pdﬁ(9))””: ﬁi(ﬁ,'())"
i=1 1%

Then

(a) lim,_ o fo(z) = Hf\zl _Z_Zi Z

Ziz—1 |z

5 holds uniformly on each compact subset of D,

and
P

(0 timyeoe [\ fo— Kp(B ) TN ———o| dp=o.

Ziz — 1|z

If A is an empty set then the right-hand side of (a) is equal to 1; that is,
Hf\fl -—Z:,Zil Z_[z =1.
=1 z;z ‘

Zi

3. Proof of Theorem 1

Before proving Theorem 1, we show an intermediate result.

"We wish to point out a missprint in condition (iv) of the mentioned reference. It is necessary to
substitute T, |z” by [T, |z
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Theorem 4. For 0<p< oo

PnJ’

lim
n— oo

= D[J(.uvo)v
P

n

where 0 replaces D,(u,0) if log 1/ (0) is not integrable.

Proof. Let A= N be an indexed sequence such that

P P
li n,p =1 np 8
nen| [ W || = | [ ®)

P P

From a result due to Szegd (see [16, p. 297]), we know that if 7}, are the extremal
polynomials such that

[|Tu2ll, = min{||Qu||, : On monic of degree n},
then

. T 112 2

lim | T,3 = fim || 75513 = Da(s, 0)%, )
with Dy(p,0) = 0 if log i/ (0) is not integrable. Since the zeros of 7}, , liein [, ¢,(z) =

(T,’Z‘_rz(z))z/p is analytic in {|]z|<1}, so as (1) holds, from Theorem 2 there exists a

Rm
sequence {W—;L}mne/\’c A such that

lim sup R, (2)
neh <1\ W, (2)

- (pn(z)‘ = 0.

In particular, since ¢,(0) = (T;,‘_VZ(O))I”/2 =1= W} (0), we have lim,cA Ry, (0) = 1.

my,

Hence

P
i _R’"" ; P 1 ) P »
;lzler?\ :l,ler?\”(/)”‘p :,111;1;1\||Tn.2||2 = D>(u,0)" = D, (1, 0)
"p
and
. P,
lim sup||=L|| <D, (g 0). (10)
n— oo n

P
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On the other hand, using Jensen’s inequality

1 on P* p(eiG)p 1 2 P* (eiO)p
— P 2 du(0)= — P2 (0) d6
2wy W 4HO) 2n/0 weeny | X0
1 2 P* (ei('))p
> _ 1 BELY.ANNES
exp{zn/o og (o) do
1 2n
o !/
X exp{zn/0 log 1/'(6) d@}
P* (O)P
> |22 D, (1, 0)” = D,
W;(O) p(,LL, 0) )2 ([1, O)
Therefore,
h,?liolclf Lo =D,(u,0). (11)
nllp

With (10) and (11) the theorem is proved. [

Remark 1. We also proved that

. (1/
= lim 7
» n— oo T

Proof of Theorem 1.

P, ,
W

n

P ,(2)
Wi(2)

lim

n— oo

P 1/p
i (0) de> ~ D, (1,0).

Proof. (1)< (ii): It follows from Theorem 4.

(i)= (iii): We consider the function

Py (2)Dy(u.2)
"2 = S D, (1 0)°

that belongs to H”. Since /,(0) =1 and |D,(u,e”)|’ = 1/(0), from Theorem 4,
we have

] 2n .
lim { — (") dO b = 1. 13
tim {o [ ey ao (13)
Applying Theorem 3 (here A = () and f is the Lebesgue measure) it follows that

1 2n )
lim { — (%) = 117.d0 3 = 0.
ngrolo{zn/o () — 1] dé)} 0

Hence

1 2n
lim ¢ — /
n— o0 27'C 0

(12)

P, (") Dy(u, )

. -1
W, (e”)Dy(p, 0)

»
dG}:O
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and then

1 2n P
nllngo{ﬂ /0 W (0) d@} =0

Therefore, using (13) and again Theorem 4, we obtain (iii) where S(z) = K,(u, 2).
(iii)= (1): It follows from the relation

P, ,(¢”)  Dy(p,0)

Wi(e)  Dp(u,e”)

P
_mp_
W v

n

where () is such that |[y[[,#0.
Indeed, according to (14) we have that there exists a subsequence {n,} such that

%

lim | [~
Vo 0 WI;‘ l//

lim inf
n— oo

=0, (14)
P

=0.
»
If (1) does not hold, from Theorem 4

*

lim ||—22
V= o0 W;{

:0,
P

and we obtain ||y, = 0, which is a contradiction.

(iii)= (iv): The sequence of functions {/,} as in (12) satisfies the hypothesis of
Theorem 3, hence lim,,, o, /1,(z) = 1 holds uniformly on each compact subset of D.
Now, since (i) is equivalent to (iii), using again Theorem 4, we obtain

P ,(2)
. W (z) 1
1 1 = .
= [Py, @) Dpls2)
W@ 1l,
(iv)= (i). From (iv) and Theorem 4, we have
£, ,(0)
o W0) 1
lim =T0) = ———
ST e T Y T
w2 1l,

but this is true if and only if (i) holds. O

4. Density Theorem

In this section we give a density theorem that can be seen as an “application” of
the main result.

We introduce the notation: R, = {V{} chell, i}
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Theorem 5. Assume that u is an absolutely continuous measure u, and satisfies Szego’s
condition, then the following statements are equivalent:

(1) For each jeZ

1 2n
lim —/
n— o0 27'[ 0

where P, ,_; , is the monic extremal polynomial; that is,

’ :min{H
P

(i) For each keZ., R,y is dense in H?(u,).

p

P* ) ei()
Fract ol 41 0) = Dy (1,07

W (e)

Punj,p
W,

: Qpjell,, monic}.
»

On =
W

Proof. (ii)= (i): Here we use the same technique as in the proof of Theorem 4. It is
well known that (i) <> (i) is true when p = 2 and W,,(z) = 2" (see, for example, [16, p.
297]). Let T,,_1 > denote the monic extremal polynomials in this case, then given k>0
there exist polynomials R, _x of degree m, — k such that

* /p R,k (2) ’
( n—k(Z))2 _W

my,

1, (0) d0 = 0.

a

Notice that the functions {(7 :_,6)2/ P} are analytic in an open set containing {|z|<1}
because T, has no zeros in {|z|<1}. Then

(a) lim,5 o Ry, —1(0) = 1;
Rm,ﬁk(z)

Wi, (2)

my,

4
1 on
) 1,(0) d0 = Dy (n,, 0Y.

b i —> 00 A
(b) lim, 7 Jo

Given A= N an indexed sequence, from (ii) we observe that the sequence {m,} can
be chosen in A. Therefore, (i) follows from (a) and (b).
()= (ii): Set i, je Z,, using (i) and Theorem 3, we have

Pl i, p(?)

W:(Z) _’KP(“mZ)

in I”(p,). Then

2P (i, p ()

i
K
W;{(Z) -z P(iuaﬂz)7

in H?(u,). Since H?(u,) = H? - K,(u,, ) and HP is the closure of the polynomials in
17, R, ; satisfies (ii). [
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5. Generalizations

In this section we give two generalizations of Szegd’s theorem for extremal
rational functions. First, for a closed rectifiable Jordan curve C, and second, for sets
of the form F = Tu{z,z,...,zy}, with z;eD. Szegd’s theorem on [F respect to a
fixed measure was proved by Kaliaguine [8].

With the same techniques used in Theorem 1, we can prove an analogous theorem
for closed rectifiable Jordan curves. We begin introducing the necessary notation.
Let e C and let C be a closed rectifiable Jordan curve with length / in the z-plane in
whose interior lies . Let a(s) be a finite positive measure on [0,/). As usual, by
I?(C,0) we denote the space of complex measurable functions on C, such that

1/p
1o = {55 [r@Pas} " <oo. c=c0). seloun,

with { = {(s) a parametrization of C. Let B denote the interior of C and consider the
conformal transformation

x=0(z)=a+z+bz? + -, |z|<1, xeB

which maps D onto B, such that o« = ¢(0) and ¢’(0)>0. From Caratheodory’s
theorem ¢ can be extended continuously to {|z|<1} so that ¢ is a bijection from
{|z] = 1} to C whose inverse we denote by z = y(x). Then, the measure ¢ induces an

image measure p on |z| = 1 by p(E) = ({7 (7 (E)) = o ((y=() "' (E)), thus

o' (s)|dC| = o'(s)|¢' ()| 4O = 1'(0) d0.
Let J be the unbounded component of the complement of C and z = ¢(x) the
conformal transformation which maps J onto E so that the points at infinity correspond

to each other and ¢'(c0)>0. Let Cr denote generically the curve |¢(x)] = R>1in J.
We define do,, = “i—”‘,,, where {Y,}, neN is a sequence of polynomials such that for

.....

interior to Cy, A>1 and Y,(x) = L.
We want to study the asymptotic behavior of the polynomials 15,1, », that solve the

following extremal problem:
. [ ref }””
np = inf = inf ¢{— / do(s . 15
P b On(2)=1 ||Qn||17,0n Qrz(“):l {27-5 c Yn(é) ( ) ( )

First we quote a result analogous to Theorem 2.

Theorem 6 (See Walsh [18], pp. 252-253). Let C be a closed rectifiable Jordan curve
and let the points (0;),_ .,on be given with no limit points interior to Cy4. If f is an

analytic function on and within Cr, there exists a sequence r, of functions of the form
(5) such that

lim 1, (x) = f(x),

n— oo

_ A’T+T+24

uniformly for x on each closed subset of interior of Cr, where R = 724
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Using this result we can obtain a theorem analogous to Theorem 1:

Theorem 7. For 0<p< o0, the following statements are equivalent:

(1) o satisfies the Szego condition.
(i1) The following limit exists and is positive:

lim p, ,>0.

(iii) There exists Se L (C,a) with S|, ,#0, such that

ﬁn,p(x)

lim Y (x)

n— o0

=0.
yXd

—S(x)

(iv) There exists a function T analytic in B such that

Isnp(x)
m z/—():T(x)
n->wo ||P, Pup
Yo ll,o

holds uniformly on each compact subset of B.

Moreover, if (i) holds, lim, ., , p, , = 4,(c,%), S(x) = J,(d,x), and T(x) = m,
where 4, (0, x) = D,(u,7(x)) and J, (0, x) = K (1, 7(x))-

This theorem can also be given for sets of the form F = Tu{z,z, ...,zy} with

zreD. Let f, be a varying measure such that 5, = p, +n, where y is a discrete
du

measure with mass A, >0 at the point zx, k =1, ..., N, and dy, = WP the varying

measure with g and W, as in Section 1.
Here, we study the asymptotic behavior of the polynomials 7 p(z7 f,), that solve
the extremal problem

A min ! /
e P,(0)= 27‘[ |z|=1

Theorem 8. For 0<p< oo the following statements are equivalent:

P N

1/p
du(0)+) P,,(zk)PAk} : (16)

k=1

P,(2)
Wi (z)

(1) u satisfies the Szego condition.
(i1) The following limit exists and is positive:

Tim 4, >0.
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(iii) There exists a function Se HP(p) with ||S||, ,#0 such that

T (2, B)

lim ZCHE (2)

n— o0

(iv) There exists a function T analytic in D such that

T: (2 By)
| W, 0)
lim ——/A——=T(z
A1 T B )
W: Y

holds uniformly on each compact subset of D.
Moreover, if (i) holds
nlinolo I, p = Dp(1,0)

and the functions in (iii) and (iv) are S(z) = g/”] ((Z 0)) and T(z) = m, respectively.

Proof. We will only prove (i)<> (ii) because the rest of the proof is similar to that
given in Theorem 1.

Since A; >0,

1
Jmp> inf {— / On(2)
0,(0)=1 | 21 Ji =1 | W (2)

and from Theorem 1

» 1/p
d,u(@)} =Ty p,

liminf 4, ,>D,(u,0). (17)
n— o0
Now, let Vy be the polynomial whose zeros are zi, z3, ..., zy and let T, , with

T, v ,(0) =1, be the extremal polynomial for the measure |%|” du,,; that is,

. 0, N[ VN(2)|
< inf / d
BP0 n =1 Ji=1| Wi(z) | [V (0) g
_ / T:lLN,p(Z)p VN(Z)pd'u'
=1l Wi(2) | [Vn(0)

Using the Theorem 4, we have

Tnp(2)
W, (2)

n

lim
n— w0 |z]=1

”‘ Vn(2)
Vn(0)

» »
d,u,O) .
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From the properties of the Szeg6 function, we obtain that

o ([

P
du, 0> = Dy(1,0)

and hence

lim sup 4, ,<D,(u,0). (18)

n— oo

The result follows from (17) and (18). O
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